Water Accelerated Allylation of Aldehydes by Using Water Tolerant Grignard-Type Allylating Agents from Allylmagnesium Chloride and Various Metallic Salts

Tomohiro Fukuma, Sandra Lock, Norikazu Miyoshi, and Makoto Wada*

Department of Chemistry, Faculty of Integrated Arts and Sciences, The University of Tokushima,

1-1 Minamijosanjima, Tokushima 770-8502

(Received October 25, 2001; CL-011052)

Some water-tolerant allylating agents prepared *in situ* from allylmagnesium chloride and bismuth trichloride, tin tetrachloride, tin dichloride, antimony trichloride, indium trichloride, or nickel dichloride reacted with aldehydes in THF–H₂O to afford the desired homoallylic alcohols in good yields. The present reaction proceeded more smoothly than that under non-aqueous media.

The allylation reaction of carbonyl compounds is one of the most fundamental carbon-carbon bond forming reactions in organic synthesis, and efficient methods using allylmetallic compounds have been reported in anhydrous solvents.¹ In general, organometallic compounds usually have to be prepared and treated in anhydrous solvents, owing to rapid protonolysis. In the last decade there has been increasing recognition that organic reactions carried out in aqueous media or protic solvents.² For example, protection and deprotection processes of the functional groups such as hydroxyl groups and carboxyl groups can sometimes be simplified.

The Grignard reagent is one of the most useful and convenient reagents for performing allylation reactions. However, there are few reports on the allylation using allylmagnesium-type reagents in aqueous media.³ On the other hand, although a lot of Barbier-type allylations in aqueous media have been reported by using various metals such as zinc (Zn), indium (In), and tin (Sn),² a Grignard-type allylation in aqueous media by using allylating agents generated in situ from allylmagnesium reagents and metallic salt (SnCl₄ or InCl₃), to our knowledge, was only reported by Whitesides and co-workers.⁴ However, they have not reported the character and reactivity of their agents under aqueous or non-aqueous conditions. Therefore, it is desirable to develop a new stable allylating agent in aqueous media or protic solvents and to devise an efficient method using those solvents. Herein, we wish to report water accelerated allylation of aldehydes by using water-tolerant Grignard-type allylating agents from allylmagnesium chloride ($CH_2 = CHCH_2MgCl$) and various metallic salts (eq 1).

$$MgCl_{+} various \underset{metallic salts 2)}{\overset{1) \text{ THF}}{\text{metallic salts 2) }} RCH0 \atop R \xrightarrow{OH} R^{(1)}$$

We have already reported allylation reactions of aldehydes by the use of Bi or bismuth trichloride (BiCl₃)—Zn, —metallic iron (Fe), or —metallic aluminium (Al).⁵ We have also reported a novel aqueous Barbier-type allylation of aldehydes by using allyl bromide in the presence of Mg and BiCl₃.⁶ Therefore, we speculated CH₂ = CHCH₂MgCl might react with BiCl₃ to produce some water-tolerant allylating agent.

So, we investigated the reaction of the allylbismuth reagent prepared *in situ* in THF from $CH_2 = CHCH_2MgCl$ and $BiCl_3$ with aldehydes in non-aqueous or aqueous conditions. It was found that the present reaction proceeded more smoothly than that under non-aqueous media, and the yields of the corresponding homoallylic alcohols increased under aqueous conditions rather than that under non-aqueous conditions as shown in Table 1.⁷ Not only various aldehydes (both aromatic and aliphatic aldehydes; Entries 1–3 and Entries 4–8) but also carbonyl compounds containing a carboxyl group (Entries 10 and 11) reacted smoothly to afford the corresponding homoallylic alcohols or the allylated lactone in good yields. It is noteworthy that nearly equimolar amount of allylbismuth reagent was used and the reaction took place smoothly without the protection of the carboxyl group.

Table 1. Allylation of carbonyl compounds by using allylbismuth reagent in aqueous media $^{\rm a}$

BIOL .	MgCl	D°C RCH	IO OH		
BiCl ₃ +	2) H ₂ O o withou		R		
Entry	Aldahuda	Yield / % ^b			
Entry	Aldehyde	Solvent:THF	$Solvent: THF-H_2O$		
1	PhCHO	80	85		
2	сн ₃ о-Сно	85	90		
3	сі— Сно	—	82		
4	PhCH ₂ CHO		76		
5	PhCH ₂ CH ₂ CHO	81	93		
6	CH ₃ (CH ₂) ₇ CHO	79	89		
7	c-Hex-CHO	73	80		
8	CH ₂ =CH(CH ₂) ₉ CHO	_	84		
9°	Ph	_	78		
10	ОН	61	79		
11^{d}	СНО ОН	72	88		

^aThe molar ratio of CH₂=CHCH₂MgCl:BiCl₃:aldehyde=1.5:1.5:1.0. All the products gave satisfactory IR and ¹H NMR spectra, and some products were also identified by elemental analyses or by comparison with authentic samples. ^bIsolated yields are given. ^c1,2-Addition product was obtained. ^dAllylated lactone was obtained.

Furthermore, we next investigated the stereoselectivity of the reaction of benzaldehyde with crotylating agent prepared from 1-methyl-2-propenylmagnesium chloride (commercially available from Sigma-Aldrich Inc.) and BiCl₃, and the results are

Copyright © 2002 The Chemical Society of Japan

summarized in Table 2. Thus, the reaction in the presence of BiCl₃ gave predominant *syn* selectivity (85 : 15) although a mixture of *syn* and *anti* isomers (59 : 49) was obtained when Grignard reagent alone was used. It is particularly interesting that the addition of water is also effective in the present reaction, viz., both chemical yield and stereoselectivity increased (Entry 3). Our finding is comparable with *syn*-selective addition of crotyltrial-kyltins (*cis* and *trans* mixture) to aldehydes.⁸ However, it is noteworthy that bismuth compounds are less toxic than tin compounds.

Table 2. Stereoselectivity of crotylation of benzaldehyde

PhCHO +	MgCl Pr	OH syn + P	OH anti	
Entry	Reaction conditions	Yield / %ª	syn : anti ^b	
1	without BiCl ₃ /THF	83	51:49	
2°	BiCl ₃ /THF	69	85:15	
3°	BiCl ₃ / THF-H ₂ O	87	90:10	
^a Isolated yields are given ^b The ratio of diastereomer was determined by ${}^{1}H$				

NMR spectra. See Ref. 5a. ^oThe molar ratio of 1-methyl-2-propenyl magnesium chloride:BiCl₃:benzaldehyde=1.5:1.5:1.0.

These above results prompted us to try the allylation in aqueous environment using the allylating agents generated from Grignard reagent and various metallic salts except BiCl₃. Some of the results are summarized in Table 3, and the reactions using NiCl₂, InCl₃, SnCl₄, SnCl₂, and SbCl₃ proceeded more smoothly in aqueous media to afford the corresponding homollylic alcohols in good yields although AlCl₃, ScCl₃, and ZnCl₂ were not effective.

Table 3. Allylation of benzaldehyde by using allyl Grignard reagent and metallic salts^a

Me Me	DCI 1) metallic salt	t, THF PhC	он он		
2) H_2O or without H_2O Ph					
Entry	Metallic salt	Yield / % ^b			
Linuy		Solvent:THF	Solvent:THF-H ₂ O		
1	NiCl ₂	53	67°		
2	InCl ₃	73	98		
3	SnCl ₄	84	96		
4	SnCl ₂	59	85 ^d		
5	SbCl ₃	78	86		

^aThe molar ratio of metallic salt:CH₂=CHCH₂MgCI:benzaldehyde is 1.2:1.2:1.0 unless otherwise stated. ^bIsolated yield. ^cThe molar ratio is 1.5:1.5:1.0. A quantitative yield was obtained when the molar ratio was 1.5:3.0:1.0. ^dThe molar ratio is 1.0:1.0:2.0.

Based on the above results, we assumed that the allylating agents prepared *in situ* were stable in aqueous media. Therefore, we next investigated the stability of the allylating agent prepared *in situ*. After leaving the allylating agents prepared *in situ* from $CH_2 = CHCH_2MgCl$ and various metallic salts in THF for several hours by the addition of H_2O (THF : $H_2O = 4 : 1$), 3-phenylpropanal was added to the reaction mixture. As shown in Table 4, it is noteworthy that the reactivity of the allylating agent prepared *in situ* to 3-phenylpropanal did not disappear for several hours in aqueous media in the case of SnCl₄, SnCl₂, and BiCl₃. To our surprise, it was found that the allyating agent prepared *in situ* from $CH_2 = CHCH_2MgCl$ and $SnCl_4$ in THF had an enough reactivity in aqueous media even after 3 days. Furthermore, the

Table 4. Investigation of the stability of the allylating agents in aqueous environment

	MgCI metallic salt 1) H ₂ O, several hours			5	OH			
//~		THF	2) Ph(C			Ph	\checkmark	\sim
Entry	Delay	period,	^{/ h} BiCl ₃	SnCl ₄	Y iel SnCl	d / % 2 NiCl2	InCl	3 SbCl3
1	Immed		93	94	91	92	93	86
2	1		86	92	87	81	47	83
3	3		86	87	90	68	22	55
4	5		83	92	80	30	13	46
5	7		_	93	_	21	5	_
6	10		53	91	81	—	—	—
7	3 d	ays	_	85	-	_	-	_

reaction of the above allylating agent⁹ with benzaldehyde occurred very rapidly (within 15 min) in water to give the homoallylic alcohol in 86% yield.

Finally, we found that the allylating agents prepared *in situ* from $CH_2 = CHCH_2MgCl$ and various metallic salts were water-tolerant and the reactions with these agents were accelerated by water.

References and Notes

- 1 Y. Yamamoto and N. Asao, *Chem. Rev.*, **93**, 2207 (1993), and references cited therein.
- Reviews on organic reactions in aqueous media: a) C.-J. Li, *Chem. Rev.*, 93, 2023 (1993). b) A. Lubineau, J. Auge, and Y. Queneau, *Synthesis*, 1994, 741.
 c) T. H. Chan, C.-J. Li, M. C. Lee, and Z. Y. Wei, *Can. J. Chem.*, 72, 1181 (1994). d) C.-J. Li, *Tetrahedron*, 52, 5643 (1996). e) "Organic Synthesis in Water," ed. by P. A. Grieco, Blackie, London (1998), and references cited therein.
- 3 Unexpected Barbier-Grignard allylation of aldehydes with magnesium in THF—water has been reported. However, only aromatic aldehydes are usable as a substrate. a) C.-J. Li and W.-C. Zhang, J. Am. Chem. Soc., 120, 9102 (1998). b) W.-C. Zhang and C.-J. Li, J. Org. Chem., 64, 3230 (1999).
- 4 a) E. Kim, D. M. Gordon, W. Schmid, and G. M. Whitesides, J. Org. Chem., 58, 5500 (1993). b) Recently there has been a report of allylation of aldehydes by using commercially available tetraallyltin in water. A. McCluskey, Green Chemistry, 1999, 167. We have also found that benzaldehyde—tetraallyltin reaction (the molar ratio = 1 : 1) in water at room temperature for 28 h gave the corresponding homoallylic alcohol in 66% yield, giving the quantitative yield in the presence of glucose.^{4c} c) M. Wada, unpublished results. d) Carbonyl addition of allyl unit in water with a pre-prepared allyldibutyltin chloride has been reported. A. Boaretto, D. Marton, G. Tagliavini, and A. Gambaro, J. Organomet. Chem., 286, 9 (1985).
- 5 a) M. Wada, H. Ohki, and K. Akiba, *Bull. Chem. Soc. Jpn.*, **63**, 1738 (1990).
 b) M. Wada, M. Honna, Y. Kuramoto, and N. Miyoshi, *Bull. Chem. Soc. Jpn.*, **70**, 2265 (1997).
- 6 M. Wada, T. Fukuma, M. Morioka, T. Takahashi, and N. Miyoshi, *Tetrahedron Lett.*, 38, 8045 (1997).
- 7 A typical procedure of the reaction of 3-phenylpropanal with $CH_2 = CHCH_2MgCl$ and $BiCl_3$ is described as follows: Under an argon atmosphere, ca. 2.0 M $(1 M = 1 \text{ mol } \text{dm}^{-3})$ THF solution of $CH_2 = CHCH_2MgCl$ (0.6 ml, ca. 1.2 mmol) was added to THF (8 ml) solution of $BiCl_3$ (354 mg, 1.12 mmol) at 0 °C. After stirring for 15 min, H_2O (2 ml) was added to the reaction mixture. After stirring for 5 min at 0 °C and 5 min at room temperature, 3-phenylpropanal (104 mg, 0.77 mmol) was added. After stirring for 12 h, the reaction mixture was quenched with an aqueous 1 M hydrochloric acid (10 ml). The organic materials were extracted with diethyl ether (30 ml × 3), and the combined organic layer was washed successively with water and brine, and dried over Na₂SO₄. After evaporation of the solvents, the residue was purified by thin layer chromatography on silica gel (hexane : ether = 4 : 1) to give the corresponding homoallylic alcohol, 1-phenyl-5-hexen-3-ol (128 mg, 93% yield).
- 8 Y. Yamamoto, H. Yatagai, Y. Ishihara, N. Maeda, and K. Maruyama, *Terahedron*, 40, 2239 (1984).
- 9 In this case, we used the allylating agent (yellow powder) obtained from evaporation of the solvent (THF).